Semidefinite Programming Bounds for Constant-Weight Codes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper bounds for ternary constant weight codes from semidefinite programming and representation theory

In this thesis we use a semidefinite programming approach to find explicit upper bounds on the size of ternary constant weight codes with prescribed minimum distance d. By constructing a graph Γ = (X,E), on the set, X, of all possible ternary words of weight w letting {x, y} ∈ E ⇔ 0 < dH(x, y) < d, we can view this problem as a special case of the stable set problem. Using symmetry, the constra...

متن کامل

Bounds for projective codes from semidefinite programming

We apply the semidefinite programming method to derive bounds for projective codes over a finite field.

متن کامل

Bounds for Codes by Semidefinite Programming

Delsarte’s method and its extensions allow to consider the upper bound problem for codes in 2-point-homogeneous spaces as a linear programming problem with perhaps infinitely many variables, which are the distance distribution. We show that using as variables power sums of distances this problem can be considered as a finite semidefinite programming problem. This method allows to improve some l...

متن کامل

Strengthened semidefinite programming bounds for codes

We give a hierarchy of semidefinite upper bounds for the maximum size A(n,d) of a binary code of word length n and minimum distance at least d. At any fixed stage in the hierarchy, the bound can be computed (to an arbitrary precision) in time polynomial in n; this is based on a result of de Klerk et al. (Math Program, 2006) about the regular ∗-representation for matrix ∗-algebras. The Delsarte ...

متن کامل

Improved Linear Programming Bounds on Sizes of Constant-Weight Codes

Let A(n, d, w) be the largest possible size of an (n, d, w) constant-weight binary code. By adding new constraints to Delsarte linear programming, we obtain twenty three new upper bounds on A(n, d, w) for n ≤ 28. The used techniques allow us to give a simple proof of an important theorem of Delsarte which makes linear programming possible for binary codes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2019

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2018.2854800